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Abstract— This study utilized combination of phase plots,time steps distribution and adaptive time steps Runge-Kutta and f if th order 

algorithms to investigate a harmonically Duff ing oscillator.The object is to visually compare fourth and f if th order Runge-Kutta algorithms 

performance as tools for seeking the chaotic solutions of a harmonically excited Duffing oscillator.Though fif th order algorithms favours 

higher time steps and as such faster to execute than fourth order for all studied cases.The reliability of results obtained w ith fourth order 

worth its higher recorded total computation time steps period. 
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1 INTRODUCTION                                                                     

xtensive literature study shows that numerical technique 
is very important in obtaining solutions of differential 
equations of nonlinear systems.The most common univer-

sally accepted numerical techniques are Backward differential 
formulae, Runge-Kutta and Adams-Bashforth-Moulton. Ac-
cording to Julyan and Oreste in 1992, Runge-Kutta family of 
algorithms remain the most popular and used methods for 
integration. In numerical analysis, the Runge-Kutta methods 
can be classified as important family of implicit and explicit 
iterative methods for the approximations of solutions of ordi-
nary differential equations. Historically, the Runge-Kutta 
techniques were developed by the German mathematicians 
C.Runge and M.W. Kutta. The combination of the two names 
formed the basis of nomenclature of the method known as 
Runge-Kutta. The relevance of Runge-Kutta algorithms in 
finding solutions to problems in nonlinear dynamics cannot be 
overemphasized. Quite a number of research efforts have been 
made in the numerical solutions of nonlinear dynamic prob-
lems. It is usual when investigating the dynamics of a conti-
nuous-time system described by an ordinary differential equa-
tion to first investigate in order to obtain trajectories. Julyan 
and Oreste (1992) were able to elucidate the dynamics of the 
most commonly used family of numerical integration schemes 
(Runge-Kutta methods). The study of the authors showed that 
Runge-Kutta integration should be applied to nonlinear sys-
tems with knowledge of caveats involved. Detailed explana-
tion was provided for the interaction between stiffness and 
chaos.The findings of this research revealed that explicit 
Runge-Kutta schemes should not be used for stiff problems 
mainly because of their inefficiency. According to the authors, 
the best alternative method is to employ Backward differentia-
tion formulae methods or possibily implicit Runge-Kutta me-
thods.  
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The conclusions drawn from the paper elucidated the fact that 
dynamics is not only interested in problems with fixed point 
solutions, but also in periodic and chaotic behaviour. 
 The application of bifurcation diagrams in the chaotic study 
of nonlinear electrical circuits has been demonstrated (Ajide 
and Salau, 2011). The relevant second order differential equa-
tions were solved for ranges of appropriate parameters using 
Runge-Kutta method.The solutions obtained from this method 
were employed to produce bifurcation diagrams. This paper 
showed that bifurcation diagram is a useful tool for exploring 
dynamics of nonlinear resonant circuit over a range of control 
parameters. Ponalagusamy 2009 research paper focused on 
providing numerical solutions for system of second order ro-
bot arm problem using the Runge-Kutta sixth order algorithm. 
The precised solution of the system of equations representing 
the arm model of a robot has been compared with the corres-
ponding approximate solutions at different intervals.  The re-
sults and comparison showed that the efficiency of numerical 
integration algorithm based on the absolute error between the 
exact and approximate solutions. The implication of this find-
ing is that STWS algorithm is not based on Taylor’s series and 
it is an A-stable method. The dynamics of a torsional system 
with harmonically varying drying friction torque was investi-
gated by Duan and Singh (2008). Nonlinear dynamics of a sin-
gle degree of freedom torsional system with dry friction is 
chosen as a case study. Nonlinear system with a periodically 
varying normal load was first formulated. This is followed by 
re-formulation of a multi-term harmonic balance method 
(MHBM). The reason for this is to directly solve the nonlinear 
time-varying problem in frequency domain. The feasibility of 
MHBM is demonstrated with a periodically varying friction 
and its accuracy is validated by numerical integration using 
fourth order Runge-Kutta scheme. The set of explicit third 
order new improved Runge-Kutta (NIRK) method that just 
employed two function evaluations per step has been devel-
oped (Mohamed et al, 2011). Due to lower number of function 
evaluations, the scheme proposed herein has a lower compu-
tational cost than the classical third order Runge-Kutta me-
thod while maintaining the same order of local accuracy. Ber-
nardo and Chi-Wang (2011) carried out a critical review on the 
development of Ruge-Kutta discontinuous Galerkin (RKDG) 
methods for nonlinear convection dominated problems. The 
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authors combined a special class of Runge-Kutta time discreti-
zations that allows the method to be nonlinearly stable regard-
less of its accuracy with a finite element space discretization 
by discontinuous approximations that incorporates the idea of 
numerical fluxes and slope limiters coined during the remark-
able development of high resolution finite difference and finite 
volume schemes. This review revealed that RKDG methods 
are stable, high-order accurate and highly parallelizable 
schemes that can easily handle complicated geometries and 
boundary conditions.The review showed its immense applica-
tions in Navier-Stokes equations and Hamilton-Jacobian equa-
tions. This study no doubt has brought a relief in computa-
tional fluid dynamics.This technique has been mostly em-
ployed in analyzing Duffing oscillator dynamics.The Duffing 
oscillator has been described as a set of two simple coupled 
ordinary differential equations to solve . Runge-Kutta method 
has been extensively used for numerical solutions of Duffing 
oscillator dynamics. Salau and Ajide (2011) investigated the 
dynamical behaviour of a Duffing oscillator using bifurcation 
diagrams. The authors employed fourth order Runge-Kutta 
method in solving relevant second order differential equa-
tions. While the bifurcation diagrams obtained revealed the 
dynamics of the Duffing oscillator, it also shows that the dy-
namics depend strongly on initial conditions. Salau and Oke 
(2010) showed how Duffing equation can be applied in pre-
dicting the emission characteristics of sawdust particles. The 
paper explains the modeling of sawdust particle motion as a 
two dimensional transformation system of continous time se-
ries. The authors employed Runge-Kutta algorithm in provid-
ing solution to Duffing’s model equation for the sawdust par-
ticles. The solution was based on displacement and velocity 
perspective. The findings of the authors showed a high profile 
feasibility of modeling sawdust dynamics as emissions from 
band saws. The conclusion drawn from this work is that the 
finding no doubt provides advancement in the knowledge of 
sawdust emission studies.  
     Despite this wide application of Runge-Kutta method as a 
numerical tool in nonlinear dynamics, there is no iota of doubt 
that a research gap exists. Available literature shows that a 
research which compares the performance of different order 
(Second, Third, Fifth, Sixth e.t.c.) of Runge-Kutta has not been 
carried out. The objective of this paper is to visually compare 
fourth and fifth order Runge-Kutta algorithms performance as 
tools for seeking the chaotic solutions of a harmonically ex-
cited Duffing oscillator.   

2 METHODOLOGY 

2.1 Duffing Oscillator 

The studied normalized governing equation for the dynamic 
behaviour of harmonically excited Duffing system is given by 
equation (1)   

 
   tSinPxxx  0

21                               (1) 
In equation (1); xxx ,, represents respectively displace-

ment, velocity and acceleration of the Duffing oscillator about 
a set datum. The damping coefficient is . Amplitude strength 
of harmonic excitation, excitation frequency and time are re-

spectively
0P ,  and t.  Francis (1987), Dowell (1988) and Na-

rayanan and Jayaraman (1989b) proposed that the combina-
tion of 168.0 ,

0P = 0.21  and 0.1   or  
0168.0 ,

0P = 0.09  and 0.1  parameters leads to 
chaotic behaviour of harmonically excited Duffing oscilla-
tor.This study utilized adaptive time steps Runge-Kutta algo-
rithms to investigate equation ( 1) over one hundred and fifty 
excitation starting with a time step of ( t Excitation Pe-
riod/1000 ). The phase plot was made with the stable solu-
tions from the last fifty (50) excitation period calculations. 

 2.2 Time Step Selection  

 Steven and Raymond (2006) argued that employing a con-
stant step size to seek solutions of ordinary differential equa-
tions of some dynamical systems that exhibits an abrupt 
change could pose serious limitation.In such engineering 
problems (chaotic dynamics) of interest,the choice of adaptive 
time step size becomes inevitable. The formula used for in-
creasing and decreasing the time step ( t ) in this study is 
given by (2) and (3) respectively.The tolerance ( t ) was fixed 
at 10-6   for all computation steps while the error (  ) compares 
predicted results taking  two half-steps with taking a full step 
called module-1. Similarly module-2 compares predicted re-
sults taking three one third with taking a full step. Equation 
(2) is used when  < t  and equation (3) is used when  > t . 
 

  4/1)(95.0  ttt                                           (2) 
 
 

   
 

  5/1)(95.0  ttt                                           (3) 
 
  
 

2.3 Parameter Details of Studied Cases 

Three different cases were studied using the details given in 
table 1 in conjunction with governing equation ( 1).Common 
parameters to all cases includes displacement )0.1( x , Zero 
initial velocity )(x  and excitation frequency )1(  . 

 
      
 
 
         Table 1 : Combined Parameters for Cases 

 
Cases Damping Coefficient 

( ) 
Excitation Ampli-
tude ( 0P ) 

Case -1 0.1680 0.21 
Case-2 0.0168 0.09 
Case-3 0.0168 0.21 
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3 RESULTS AND DISCUSSIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1: Comparative Time Steps Distribution (Case-1) of fouth 
and fifth order Runge-Kutta Algorithms  

 
Fig.1 refers; the time steps distribution range is shorter for the 
fourth order algorithms and longer for the fifth order algo-
rithms.The fourth order algorithms is less tolerant of higher 
computational time steps than fifth order algorithm.The dis-
tributins for the fourth and fifth order algorithms peaked at 
0.026 and 0.026 excitation periods respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2: Comparative Time Steps Distribution (Case-2) of fourth 
and fifth Order Runge-Kutta Algorithms 
 

Fig.2 can be interpreted qualitatively as figure 1. However 
the frequency intensities differ drastically. The distributions 
for the fourth and fifth order algorithms peaked at 0.025 and 
0.048 excitation periods respectively. 
 
 
 

 
 
 
 
 
 
 

 
Fig.3: Comparative Time Steps Distribution (Case-3) of fourth 

and fifth Order Runge-Kutta Algorithms 
 Fig.3 can be interpreted qualitatively as figures 1 and 2. How-
ever, the frequency intensities differ and the distributions for 
the fourth and fifth order algorithms peaked at 0.011 and 0.043 
periods respectively. 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
   Fig.4a: Phase Plot Obtained for fourth Order (Case-1) 

 
 
 
 
                   
 
 
 
 
    
 Fig.4b: Phase Plot Obtained for fifth Order (Case-1)  

 
 

 
 
 
 
 
 
 
 
 
 Fig.4c: Phase Plot Obtained for fourth Order (Case-2) 
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Fig.4d: Phase Plot Obtained for fifth Order (Case-2)  
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

 
Fig.4e: Phase Plot Obtained for fourth Order (Case-3)  

 
 
 
 
 
 

 
 
 
 
 
 
 

Fig.4f: Phase Plot Obtained for fifth Order (Case-3)  
  
Fig.4 (a-f) shows the comparison of the phase plots obtained 
using Runge-Kutta fourth and fifth orders (module-1). Fig.4 
(a-f) refers; the phase plots are only similar but not exact for 
case-1 and case-2 only. A closer observation of the phase plot 
for case-2 shows that solutions obtained by fourth order algo-
rithm are bounded to the negative side of the displacement 
while the solutions obtained by fifth order algorithm are 
bounded to the positive side of the displacement.The phase 
plot in figure 4 (a) compare very well with phase plot obtained 
by Dowell (1988) . In addition,interpretations of table 2 strong-
ly support higher consistency and reliability of fourth order 
algorithm results than its fifth order counterpart.Overall com-
parative assessment of the phase plots in conjunction with 
time steps distribution suggest fourth order algorithm results 
as more reliable than fifth order at the expense of more com-
putation steps period(see table 3).Table 3 shows that adaptive 
fourth order can be twenty five(25) time fast to execute com-
paring with its equivalent constant time steps (See case-1 and 
case-2). Similarly, adaptive fifth order can be fifty (50) time 
fast to execute comparing with its equivalent time steps (See 
all cases). Table 3 further  shows that adaptive fifth order can 
be four times fast to compute as its counterpart fourth order as 
recorded in case-3. However, reliability of computed results 
may be doubtful. The ratio of total number of steps taking to 
seek steady solutions by fourth and fifth order algorithms is 

module independent. 
 
 
Table 2a: Corresponding Phase Plots Referring to fig.4 (a, c, 

e) for Fourth Order Algorithm 
 

Cases Constant 
Time Steps 

Adjustable 
Time 
Steps(Module-
1) 

Adjustable 
Time 
Steps(Module-
2)  

Case-1 A A None 
Case-2 D C Rough C 
Case-3 E E Rough E 

 
 

Table 2b: Corresponding Phase Plots Referring to fig. 2(b, d, f) 
for Fifth Order Algorithm 

  
Cases Constant 

Time Steps 
Adjustable 
Time 
Steps(Module-
1) 

Adjustable 
Time 
Steps(Module-
2)  

Case-1 None B Fair A 
Case-2 Looks Closer 

to B 
D C 

Case-3 E F F 
 

Note : A,B,C,D,E,F is the same as fig.4(a),(b),(c),(d),(e) and (f) 
respectively. 

 
Table 3a: Total Number of Variable Steps Taken to Obtain the 
Steady Solutions within Studied 50 Excitation Periods (Fourth 
Order Runge-Kutta) 

Cases Constant 
Time Steps 

Adaptive 
Time 
Steps(Module-
1) 

Adaptive 
Time 
Steps(Module-
2)  

Case-1 50000 1598 1588 
Case-2 50000 1598 1594 
Case-3 50000 3667 3704 

 

Table 3b: Total Number of Variable Steps Taken to Obtain the 
Steady Solutions within Studied 50 Excitation Periods (Fourth 
Order Runge-Kutta) 

Cases Constant 
Time Steps 

Adaptive Time 
Steps(Module-1) 

Adaptive Time 
Steps(Module-2)  

Case-1 50000 785 764 
Case-2 50000 788 792 
Case-3 50000 962 959 
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Table 3c: Ratio of Total Number of Steps in Fourth Order 
 to Fifth Order 

 
Module-1 Module-2 
2 2 
2 2 
4 4 

 

4 CONCLUSIONS 

   This study has visually illustrated the performance of two 
Runge-Kutta algorithms to seek the chaotic steady solutions of 
harmonically excited Duffing oscillator. The study has shown 
that Runge-Kutta fifth order can be four time fast to execute 
comparing with the corresponding fourth order but at the ex-
pense of reliability of the computed results. 
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